Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LoG-CAN: local-global Class-aware Network for semantic segmentation of remote sensing images (2303.07747v1)

Published 14 Mar 2023 in cs.CV

Abstract: Remote sensing images are known of having complex backgrounds, high intra-class variance and large variation of scales, which bring challenge to semantic segmentation. We present LoG-CAN, a multi-scale semantic segmentation network with a global class-aware (GCA) module and local class-aware (LCA) modules to remote sensing images. Specifically, the GCA module captures the global representations of class-wise context modeling to circumvent background interference; the LCA modules generate local class representations as intermediate aware elements, indirectly associating pixels with global class representations to reduce variance within a class; and a multi-scale architecture with GCA and LCA modules yields effective segmentation of objects at different scales via cascaded refinement and fusion of features. Through the evaluation on the ISPRS Vaihingen dataset and the ISPRS Potsdam dataset, experimental results indicate that LoG-CAN outperforms the state-of-the-art methods for general semantic segmentation, while significantly reducing network parameters and computation. Code is available at~\href{https://github.com/xwmaxwma/rssegmentation}{https://github.com/xwmaxwma/rssegmentation}.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.