Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Wasserstein distance and total variation regularized model to image reconstruction problems (2303.07713v2)

Published 14 Mar 2023 in math.NA and cs.NA

Abstract: Optimal transport has gained much attention in image processing field, such as computer vision, image interpolation and medical image registration. Recently, Bredies et al. (ESAIM:M2AN 54:2351-2382, 2020) and Schmitzer et al. (IEEE T MED IMAGING 39:1626-1635, 2019) established the framework of optimal transport regularization for dynamic inverse problems. In this paper, we incorporate Wasserstein distance, together with total variation, into static inverse problems as a prior regularization. The Wasserstein distance formulated by Benamou-Brenier energy measures the similarity between the given template and the reconstructed image. Also, we analyze the existence of solutions of such variational problem in Radon measure space. Moreover, the first-order primal-dual algorithm is constructed for solving this general imaging problem in a specific grid strategy. Finally, numerical experiments for undersampled MRI reconstruction are presented which show that our proposed model can recover images well with high quality and structure preservation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)