Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Binaural Speech Separation of Moving Speakers With a Wavesplit Network (2303.07458v1)

Published 13 Mar 2023 in eess.AS and cs.SD

Abstract: Binaural speech separation in real-world scenarios often involves moving speakers. Most current speech separation methods use utterance-level permutation invariant training (u-PIT) for training. In inference time, however, the order of outputs can be inconsistent over time particularly in long-form speech separation. This situation which is referred to as the speaker swap problem is even more problematic when speakers constantly move in space and therefore poses a challenge for consistent placement of speakers in output channels. Here, we describe a real-time binaural speech separation model based on a Wavesplit network to mitigate the speaker swap problem for moving speaker separation. Our model computes a speaker embedding for each speaker at each time frame from the mixed audio, aggregates embeddings using online clustering, and uses cluster centroids as speaker profiles to track each speaker throughout the long duration. Experimental results on reverberant, long-form moving multitalker speech separation show that the proposed method is less prone to speaker swap and achieves comparable performance with u-PIT based models with ground truth tracking in both separation accuracy and preserving the interaural cues.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.