Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transformer-based approaches to Sentiment Detection (2303.07292v1)

Published 13 Mar 2023 in cs.CL

Abstract: The use of transfer learning methods is largely responsible for the present breakthrough in Natural Learning Processing (NLP) tasks across multiple domains. In order to solve the problem of sentiment detection, we examined the performance of four different types of well-known state-of-the-art transformer models for text classification. Models such as Bidirectional Encoder Representations from Transformers (BERT), Robustly Optimized BERT Pre-training Approach (RoBERTa), a distilled version of BERT (DistilBERT), and a large bidirectional neural network architecture (XLNet) were proposed. The performance of the four models that were used to detect disaster in the text was compared. All the models performed well enough, indicating that transformer-based models are suitable for the detection of disaster in text. The RoBERTa transformer model performs best on the test dataset with a score of 82.6% and is highly recommended for quality predictions. Furthermore, we discovered that the learning algorithms' performance was influenced by the pre-processing techniques, the nature of words in the vocabulary, unbalanced labeling, and the model parameters.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.