Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Review on the Feasibility of Adversarial Evasion Attacks and Defenses for Network Intrusion Detection Systems (2303.07003v1)

Published 13 Mar 2023 in cs.CR and cs.AI

Abstract: Nowadays, numerous applications incorporate ML algorithms due to their prominent achievements. However, many studies in the field of computer vision have shown that ML can be fooled by intentionally crafted instances, called adversarial examples. These adversarial examples take advantage of the intrinsic vulnerability of ML models. Recent research raises many concerns in the cybersecurity field. An increasing number of researchers are studying the feasibility of such attacks on security systems based on ML algorithms, such as Intrusion Detection Systems (IDS). The feasibility of such adversarial attacks would be influenced by various domain-specific constraints. This can potentially increase the difficulty of crafting adversarial examples. Despite the considerable amount of research that has been done in this area, much of it focuses on showing that it is possible to fool a model using features extracted from the raw data but does not address the practical side, i.e., the reverse transformation from theory to practice. For this reason, we propose a review browsing through various important papers to provide a comprehensive analysis. Our analysis highlights some challenges that have not been addressed in the reviewed papers.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.