Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hybrid multi-observer for improving estimation performance (2303.06936v2)

Published 13 Mar 2023 in eess.SY and cs.SY

Abstract: Various methods are nowadays available to design observers for broad classes of systems, where the primary focus is on establishing the convergence of the estimated states. Nevertheless, the question of the tuning of the observer to achieve satisfactory estimation performance remains largely open. In this context, we present a general design framework for the online tuning of the observer gains. Our starting point is a robust nominal observer designed for a general nonlinear system, for which an input-to-state stability property can be established. Our goal is then to improve the performance of this nominal observer. We present for this purpose a new hybrid multi-observer scheme, whose great flexibility can be exploited to enforce various desirable properties, e.g., fast convergence and good sensitivity to measurement noise. We prove that an input-to-state stability property also holds for the proposed scheme and, importantly, we ensure that the estimation performance in terms of a quadratic cost is (strictly) improved. We illustrate the efficiency of the approach in improving the performance of given nominal observers in two numerical examples (Van der Pol oscillator and Lithium-Ion (Li-Ion) battery model).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.