Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Improved Sample Complexity for Rank-1 Matrix Sensing (2303.06895v1)

Published 13 Mar 2023 in cs.IT and math.IT

Abstract: Matrix sensing is a problem in signal processing and machine learning that involves recovering a low-rank matrix from a set of linear measurements. The goal is to reconstruct the original matrix as accurately as possible, given only a set of linear measurements obtained by sensing the matrix [Jain, Netrapalli and Shanghavi, 2013]. In this work, we focus on a particular direction of matrix sensing, which is called rank-$1$ matrix sensing [Zhong, Jain and Dhillon, 2015]. We present an improvement over the original algorithm in [Zhong, Jain and Dhillon, 2015]. It is based on a novel analysis and sketching technique that enables faster convergence rates and better accuracy in recovering low-rank matrices. The algorithm focuses on developing a theoretical understanding of the matrix sensing problem and establishing its advantages over previous methods. The proposed sketching technique allows for efficiently extracting relevant information from the linear measurements, making the algorithm computationally efficient and scalable. Our novel matrix sensing algorithm improves former result [Zhong, Jain and Dhillon, 2015] on in two senses: $\bullet$ We improve the sample complexity from $\widetilde{O}(\epsilon{-2} dk2)$ to $\widetilde{O}(\epsilon{-2} (d+k2))$. $\bullet$ We improve the running time from $\widetilde{O}(md2 k2)$ to $\widetilde{O}(m d2 k)$. The proposed algorithm has theoretical guarantees and is analyzed to provide insights into the underlying structure of low-rank matrices and the nature of the linear measurements used in the recovery process. It advances the theoretical understanding of matrix sensing and provides a new approach for solving this important problem.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.