Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals (2303.06845v2)

Published 13 Mar 2023 in cs.LG and q-bio.QM

Abstract: Pain is a serious worldwide health problem that affects a vast proportion of the population. For efficient pain management and treatment, accurate classification and evaluation of pain severity are necessary. However, this can be challenging as pain is a subjective sensation-driven experience. Traditional techniques for measuring pain intensity, e.g. self-report scales, are susceptible to bias and unreliable in some instances. Consequently, there is a need for more objective and automatic pain intensity assessment strategies. In this paper, we develop PainAttnNet (PAN), a novel transfomer-encoder deep-learning framework for classifying pain intensities with physiological signals as input. The proposed approach is comprised of three feature extraction architectures: multiscale convolutional networks (MSCN), a squeeze-and-excitation residual network (SEResNet), and a transformer encoder block. On the basis of pain stimuli, MSCN extracts short- and long-window information as well as sequential features. SEResNet highlights relevant extracted features by mapping the interdependencies among features. The third module employs a transformer encoder consisting of three temporal convolutional networks (TCN) with three multi-head attention (MHA) layers to extract temporal dependencies from the features. Using the publicly available BioVid pain dataset, we test the proposed PainAttnNet model and demonstrate that our outcomes outperform state-of-the-art models. These results confirm that our approach can be utilized for automated classification of pain intensity using physiological signals to improve pain management and treatment.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.