Dynamic Clustering and Cluster Contrastive Learning for Unsupervised Person Re-identification (2303.06810v1)
Abstract: Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data. However, existing methods often ignore the relationship between module parameters of Re-ID framework and feature distributions, which may lead to feature misalignment and hinder the model performance. To address this problem, we propose a dynamic clustering and cluster contrastive learning (DCCC) method. Specifically, we first design a dynamic clustering parameters scheduler (DCPS) which adjust the hyper-parameter of clustering to fit the variation of intra- and inter-class distances. Then, a dynamic cluster contrastive learning (DyCL) method is designed to match the cluster representation vectors' weights with the local feature association. Finally, a label smoothing soft contrastive loss ($L_{ss}$) is built to keep the balance between cluster contrastive learning and self-supervised learning with low computational consumption and high computational efficiency. Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC which outperforms previous state-of-the-art methods by achieving the best performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.