Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Object-Centric Multi-Task Learning for Human Instances (2303.06800v1)

Published 13 Mar 2023 in cs.CV

Abstract: Human is one of the most essential classes in visual recognition tasks such as detection, segmentation, and pose estimation. Although much effort has been put into individual tasks, multi-task learning for these three tasks has been rarely studied. In this paper, we explore a compact multi-task network architecture that maximally shares the parameters of the multiple tasks via object-centric learning. To this end, we propose a novel query design to encode the human instance information effectively, called human-centric query (HCQ). HCQ enables for the query to learn explicit and structural information of human as well such as keypoints. Besides, we utilize HCQ in prediction heads of the target tasks directly and also interweave HCQ with the deformable attention in Transformer decoders to exploit a well-learned object-centric representation. Experimental results show that the proposed multi-task network achieves comparable accuracy to state-of-the-art task-specific models in human detection, segmentation, and pose estimation task, while it consumes less computational costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.