Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scavenger: A Cloud Service for Optimizing Cost and Performance of ML Training (2303.06659v1)

Published 12 Mar 2023 in cs.DC and cs.LG

Abstract: While the pay-as-you-go nature of cloud virtual machines (VMs) makes it easy to spin-up large clusters for training ML models, it can also lead to ballooning costs. The 100s of virtual machine sizes provided by cloud platforms also makes it extremely challenging to select the ``right'' cloud cluster configuration for training. Furthermore, the training time and cost of distributed model training is highly sensitive to the cluster configurations, and presents a large and complex tradeoff-space. In this paper, we develop principled and practical techniques for optimizing the training time and cost of distributed ML model training on the cloud. Our key insight is that both parallel and statistical efficiency must be considered when selecting the optimum job configuration parameters such as the number of workers and the batch size. By combining conventional parallel scaling concepts and new insights into SGD noise, our models accurately estimate the time and cost on different cluster configurations with < 5% error. Using the repetitive nature of training and our models, we can search for optimum cloud configurations in a black-box, online manner. Our approach reduces training times by 2 times and costs more more than 50%. Compared to an oracle-based approach, our performance models are accurate to within 2% such that the search imposes an overhead of just 10%.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube