Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Predicting Hurricane Evacuation Decisions with Interpretable Machine Learning Models (2303.06557v1)

Published 12 Mar 2023 in cs.LG and cs.AI

Abstract: The aggravating effects of climate change and the growing population in hurricane-prone areas escalate the challenges in large-scale hurricane evacuations. While hurricane preparedness and response strategies vastly rely on the accuracy and timeliness of the predicted households' evacuation decisions, current studies featuring psychological-driven linear models leave some significant limitations in practice. Hence, the present study proposes a new methodology for predicting households' evacuation decisions constructed by easily accessible demographic and resource-related predictors compared to current models with a high reliance on psychological factors. Meanwhile, an enhanced logistic regression (ELR) model that could automatically account for nonlinearities (i.e., univariate and bivariate threshold effects) by an interpretable machine learning approach is developed to secure the accuracy of the results. Specifically, low-depth decision trees are selected for nonlinearity detection to identify the critical thresholds, build a transparent model structure, and solidify the robustness. Then, an empirical dataset collected after Hurricanes Katrina and Rita is hired to examine the practicability of the new methodology. The results indicate that the enhanced logistic regression (ELR) model has the most convincing performance in explaining the variation of the households' evacuation decision in model fit and prediction capability compared to previous linear models. It suggests that the proposed methodology could provide a new tool and framework for the emergency management authorities to improve the estimation of evacuation traffic demands in a timely and accurate manner.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.