Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Credit Card Fraud Detection Using Enhanced Random Forest Classifier for Imbalanced Data (2303.06514v1)

Published 11 Mar 2023 in cs.AI and cs.CR

Abstract: The credit card has become the most popular payment method for both online and offline transactions. The necessity to create a fraud detection algorithm to precisely identify and stop fraudulent activity arises as a result of both the development of technology and the rise in fraud cases. This paper implements the random forest (RF) algorithm to solve the issue in the hand. A dataset of credit card transactions was used in this study. The main problem when dealing with credit card fraud detection is the imbalanced dataset in which most of the transaction are non-fraud ones. To overcome the problem of the imbalanced dataset, the synthetic minority over-sampling technique (SMOTE) was used. Implementing the hyperparameters technique to enhance the performance of the random forest classifier. The results showed that the RF classifier gained an accuracy of 98% and about 98% of F1-score value, which is promising. We also believe that our model is relatively easy to apply and can overcome the issue of imbalanced data for fraud detection applications.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.