Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

E2CoPre: Energy Efficient and Cooperative Collision Avoidance for UAV Swarms with Trajectory Prediction (2303.06510v2)

Published 11 Mar 2023 in cs.RO

Abstract: This paper presents a novel solution to address the challenges in achieving energy efficiency and cooperation for collision avoidance in UAV swarms. The proposed method combines Artificial Potential Field (APF) and Particle Swarm Optimization (PSO) techniques. APF provides environmental awareness and implicit coordination to UAVs, while PSO searches for collision-free and energy-efficient trajectories for each UAV in a decentralized manner under the implicit coordination. This decentralized approach is achieved by minimizing a novel cost function that leverages the advantages of the active contour model from image processing. Additionally, future trajectories are predicted by approximating the minima of the novel cost function using calculus of variation, which enables proactive actions and defines the initial conditions for PSO. We propose a two-branch trajectory planning framework that ensures UAVs only change altitudes when necessary for energy considerations. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method in various situations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. R. Zahínos, H. Abaunza, J. Murillo, M. Trujillo, and A. Viguria, “Cooperative multi-uav system for surveillance and search&rescue operations over a mobile 5g node,” in International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2022, pp. 1016–1024.
  2. M. Petrlík, V. Vonásek, and M. Saska, “Coverage optimization in the cooperative surveillance task using multiple micro aerial vehicles,” in IEEE International Conference on Systems, Man and Cybernetics (SMC).   IEEE, 2019, pp. 4373–4380.
  3. R. Zhang, X. Pang, W. Lu, N. Zhao, Y. Chen, and D. Niyato, “Dual-uav enabled secure data collection with propulsion limitation,” IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7445–7459, 2021.
  4. A. M. Hayajneh, S. A. R. Zaidi, D. C. McLernon, and M. Ghogho, “Drone empowered small cellular disaster recovery networks for resilient smart cities,” in IEEE international conference on sensing, communication and networking (SECON Workshops).   IEEE, 2016, pp. 1–6.
  5. W. Wei, X. Pang, J. Tang, N. Zhao, X. Wang, and A. Nallanathan, “Secure transmission design for aerial irs assisted wireless networks,” IEEE Transactions on Communications, 2023.
  6. C. Zhao, X. Pang, W. Lu, Y. Chen, N. Zhao, and A. Nallanathan, “Energy efficiency optimization of irs-assisted uav networks based on statistical channels,” IEEE Wireless Communications Letters, 2023.
  7. Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory optimization,” IEEE Transactions on wireless communications, vol. 16, no. 6, pp. 3747–3760, 2017.
  8. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using the relative velocity paradigm,” in Proceedings of the IEEE International Conference on Robotics and Automation.   IEEE, 1993, pp. 560–565.
  9. A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic environment: A collision cone approach,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 28, no. 5, pp. 562–574, 1998.
  10. J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in IEEE international conference on robotics and automation.   IEEE, 2008, pp. 1928–1935.
  11. S. Huang and K. Low, “A path planning algorithm for smooth trajectories of unmanned aerial vehicles via potential fields,” in 15th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2018, pp. 1677–1684.
  12. K. F. E. Tsang, Y. Ni, C. F. R. Wong, and L. Shi, “A novel warehouse multi-robot automation system with semi-complete and computationally efficient path planning and adaptive genetic task allocation algorithms,” in 15th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2018, pp. 1671–1676.
  13. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2.   IEEE, 1985, pp. 500–505.
  14. S. Huang, R. S. H. Teo, and K. K. Tan, “Collision avoidance of multi unmanned aerial vehicles: A review,” Annual Reviews in Control, vol. 48, pp. 147–164, 2019.
  15. T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 6753–6760.
  16. B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Nikolakopoulos, “Nonlinear mpc for collision avoidance and control of uavs with dynamic obstacles,” IEEE robotics and automation letters, vol. 5, no. 4, pp. 6001–6008, 2020.
  17. R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE international conference on neural networks, vol. 4.   Citeseer, 1995, pp. 1942–1948.
  18. R. L. Galvez, E. P. Dadios, and A. A. Bandala, “Path planning for quadrotor uav using genetic algorithm,” in International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).   IEEE, 2014, pp. 1–6.
  19. Y. Zhang, Z. Wu, Y. Ma, R. Sun, and Z. Xu, “Research on autonomous formation of multi-uav based on maddpg algorithm,” in IEEE 17th International Conference on Control & Automation (ICCA).   IEEE, 2022, pp. 249–254.
  20. L. Xu, W. Chen, X. Liu, and Y.-Y. Chen, “Maddpg: Multi-agent deep deterministic policy gradient algorithm for formation elliptical encirclement and collision avoidance,” in Proceedings of the 5th Chinese Conference on Swarm Intelligence and Cooperative Control.   Springer, 2023, pp. 239–250.
  21. D. Wu, K. Wan, J. Tang, X. Gao, Y. Zhai, and Z. Qi, “An improved method towards multi-uav autonomous navigation using deep reinforcement learning,” in 7th International Conference on Control and Robotics Engineering (ICCRE).   IEEE, 2022, pp. 96–101.
  22. A. Viseras, M. Meissner, and J. Marchal, “Wildfire front monitoring with multiple uavs using deep q-learning,” IEEE Access, 2021.
  23. J. Bjorck, C. P. Gomes, and K. Q. Weinberger, “Is high variance unavoidable in rl? a case study in continuous control,” arXiv preprint arXiv:2110.11222, 2021.
  24. S. C. Chan, S. Fishman, J. Canny, A. Korattikara, and S. Guadarrama, “Measuring the reliability of reinforcement learning algorithms,” arXiv preprint arXiv:1912.05663, 2019.
  25. K. Clary, E. Tosch, J. Foley, and D. Jensen, “Let’s play again: Variability of deep reinforcement learning agents in atari environments,” arXiv preprint arXiv:1904.06312, 2019.
  26. N. A. Lynnerup, L. Nolling, R. Hasle, and J. Hallam, “A survey on reproducibility by evaluating deep reinforcement learning algorithms on real-world robots,” in Conference on Robot Learning.   PMLR, 2020, pp. 466–489.
  27. P. Chen, J. Pei, W. Lu, and M. Li, “A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance,” Neurocomputing, 2022.
  28. S. Huang, H. Zhang, and Z. Huang, “E2coop: Energy efficient and cooperative obstacle detection and avoidance for uav swarms,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 31, 2021, pp. 634–642.
  29. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.
  30. L. Parker, J. Butterworth, and S. Luo, “Fly safe: Aerial swarm robotics using force field particle swarm optimisation,” arXiv preprint arXiv:1907.07647, 2019.
  31. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  32. A. Stentz, “Optimal and efficient path planning for partially known environments,” in Intelligent unmanned ground vehicles.   Springer, 1997, pp. 203–220.
  33. S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–363, 2005.
  34. A. Alexopoulos, A. Kandil, P. Orzechowski, and E. Badreddin, “A comparative study of collision avoidance techniques for unmanned aerial vehicles,” in IEEE international conference on systems, man, and cybernetics.   IEEE, 2013, pp. 1969–1974.
  35. P. NA and P. Sujatha, “Comparison between pso and genetic algorithms and for optimizing of permanent magnet synchronous generator (pmsg) machine design,” International Journal of Engineering & Technology, vol. 7, no. 3.3, pp. 77–81, 2018.
  36. Y. Cai and S. X. Yang, “A potential field-based pso approach for cooperative target searching of multi-robots,” in Proceeding of the 11th World Congress on Intelligent Control and Automation.   IEEE, 2014, pp. 1029–1034.
  37. S. Huang, H. Zhang, and Z. Huang, “Multi-uav collision avoidance using multi-agent reinforcement learning with counterfactual credit assignment,” arXiv preprint arXiv:2204.08594, 2022.
  38. M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings of the 10th international conference on machine learning, 1993, pp. 330–337.
  39. R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” arXiv preprint arXiv:1706.02275, 2017.
  40. P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-agent learning,” arXiv preprint arXiv:1706.05296, 2017.
  41. T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “Monotonic value function factorisation for deep multi-agent reinforcement learning,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 7234–7284, 2020.
  42. J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy gradients,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
  43. Z. Liu, Z. Wu, and Z. Zheng, “A cooperative game approach for assessing the collision risk in multi-vessel encountering,” Ocean Engineering, vol. 187, p. 106175, 2019.
Citations (6)

Summary

We haven't generated a summary for this paper yet.