Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable AI for Time Series via Virtual Inspection Layers (2303.06365v1)

Published 11 Mar 2023 in cs.LG, cs.AI, and cs.CV

Abstract: The field of eXplainable Artificial Intelligence (XAI) has greatly advanced in recent years, but progress has mainly been made in computer vision and natural language processing. For time series, where the input is often not interpretable, only limited research on XAI is available. In this work, we put forward a virtual inspection layer, that transforms the time series to an interpretable representation and allows to propagate relevance attributions to this representation via local XAI methods like layer-wise relevance propagation (LRP). In this way, we extend the applicability of a family of XAI methods to domains (e.g. speech) where the input is only interpretable after a transformation. Here, we focus on the Fourier transformation which is prominently applied in the interpretation of time series and LRP and refer to our method as DFT-LRP. We demonstrate the usefulness of DFT-LRP in various time series classification settings like audio and electronic health records. We showcase how DFT-LRP reveals differences in the classification strategies of models trained in different domains (e.g., time vs. frequency domain) or helps to discover how models act on spurious correlations in the data.

Citations (21)

Summary

We haven't generated a summary for this paper yet.