Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Singleton-Optimal LRCs and Perfect LRCs via Cyclic and Constacyclic Codes (2303.06287v1)

Published 11 Mar 2023 in cs.IT and math.IT

Abstract: Locally repairable codes (LRCs) have emerged as an important coding scheme in distributed storage systems (DSSs) with relatively low repair cost by accessing fewer non-failure nodes. Theoretical bounds and optimal constructions of LRCs have been widely investigated. Optimal LRCs via cyclic and constacyclic codes provide significant benefit of elegant algebraic structure and efficient encoding procedure. In this paper, we continue to consider the constructions of optimal LRCs via cyclic and constacyclic codes with long code length. Specifically, we first obtain two classes of $q$-ary cyclic Singleton-optimal $(n, k, d=6;r=2)$-LRCs with length $n=3(q+1)$ when $3 \mid (q-1)$ and $q$ is even, and length $n=\frac{3}{2}(q+1)$ when $3 \mid (q-1)$ and $q \equiv 1(\bmod~4)$, respectively. To the best of our knowledge, this is the first construction of $q$-ary cyclic Singleton-optimal LRCs with length $n>q+1$ and minimum distance $d \geq 5$. On the other hand, an LRC acheiving the Hamming-type bound is called a perfect LRC. By using cyclic and constacyclic codes, we construct two new families of $q$-ary perfect LRCs with length $n=\frac{qm-1}{q-1}$, minimum distance $d=5$ and locality $r=2$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.