Robust MADER: Decentralized Multiagent Trajectory Planner Robust to Communication Delay in Dynamic Environments (2303.06222v6)
Abstract: Communication delays can be catastrophic for multiagent systems. However, most existing state-of-the-art multiagent trajectory planners assume perfect communication and therefore lack a strategy to rectify this issue in real-world environments. To address this challenge, we propose Robust MADER (RMADER), a decentralized, asynchronous multiagent trajectory planner robust to communication delay. RMADER ensures safety by introducing (1) a Delay Check step, (2) a two-step trajectory publication scheme, and (3) a novel trajectory-storing-and-checking approach. Our primary contributions include: proving recursive feasibility for collision-free trajectory generation in asynchronous decentralized trajectory-sharing, simulation benchmark studies, and hardware experiments with different network topologies and dynamic obstacles. We show that RMADER outperforms existing approaches by achieving a 100% success rate of collision-free trajectory generation, whereas the next best asynchronous decentralized method only achieves 83% success.
- P. Peng, W. Dong, G. Chen, and X. Zhu, “Obstacle avoidance of resilient uav swarm formation with active sensing system in the dense environment,” arXiv preprint arXiv:2202.13381, 2022.
- G. Ryou, E. Tal, and S. Karaman, “Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization.” Robotics: Science and Systems Foundation, Jun. 2022.
- A. P. Vinod, S. Safaoui, A. Chakrabarty, R. Quirynen, N. Yoshikawa, and S. Di Cairano, “Safe multi-agent motion planning via filtered reinforcement learning,” in 2022 ICRA, May 2022, pp. 7270–7276.
- Y. Kuwata and J. P. How, “Cooperative Distributed Robust Trajectory Optimization Using Receding Horizon MILP,” IEEE Transactions on Control Systems Technology, vol. 19, no. 2, pp. 423–431, Mar. 2011.
- R. Van Parys and G. Pipeleers, “Distributed model predictive formation control with inter-vehicle collision avoidance,” in ASCC, 2017.
- R. Firoozi, L. Ferranti, X. Zhang, S. Nejadnik, and F. Borrelli, “A distributed multi-robot coordination algorithm for navigation in tight environments,” arXiv preprint arXiv:2006.11492, 2020.
- C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with distributed model predictive control for multi-robot motion planning,” IEEE RA-L, vol. 5, no. 2, pp. 604–611, 2020.
- Y. Gao, Y. Wang, X. Zhong, T. Yang, M. Wang, Z. Xu, Y. Wang, Y. Lin, C. Xu, and F. Gao, “Meeting-merging-mission: A multi-robot coordinate framework for large-scale communication-limited exploration,” in 2022 IEEE/RSJ IROS, 2022, pp. 13 700–13 707.
- B. Sabetghadam, R. Cunha, and A. Pascoal, “A distributed algorithm for real-time multi-drone collision-free trajectory replanning,” 2022.
- S. Batra, Z. Huang, A. Petrenko, T. Kumar, A. Molchanov, and G. S. Sukhatme, “Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning,” in CoRL, Jan. 2022, pp. 576–586.
- Z. Wang, C. Xu, and F. Gao, “Robust trajectory planning for spatial-temporal multi-drone coordination in large scenes,” in 2022 IROS.
- J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient Multi-Agent Trajectory Planning with Feasibility Guarantee using Relative Bernstein Polynomial,” in 2020 ICRA, 2020, pp. 434–440.
- G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, 2015.
- D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, “An Efficient Algorithm for Optimal Trajectory Generation for Heterogeneous Multi-Agent Systems in Non-Convex Environments,” IEEE RA-L, vol. 3, no. 2, pp. 1215–1222, Apr. 2018.
- J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic environments,” IEEE T-RO, 2022.
- X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments,” 2020.
- P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How, “A Distributed Pipeline for Scalable, Deconflicted Formation Flying,” IEEE RA-L, vol. 5, no. 4, pp. 5213–5220, Oct. 2020.
- L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE T-RO, 2017.
- D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi cells,” IEEE RA-L, vol. 2, no. 2, pp. 1047–1054, 2017.
- T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios,” The International Journal of Robotics Research, 2020.
- S. H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How, “Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning,” IEEE RA-L, 2020.
- Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning,” in 2017 IEEE ICRA, 2017, pp. 285–292.
- Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multi-robot operations with limited actuation: A control barrier function approach,” IEEE Control Systems Letters, 2021.
- Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via incremental sequential convex programming,” in 2015 ICRA, May 2015, pp. 5954–5961, iSSN: 1050-4729.
- S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Towards Search-based Motion Planning for Micro Aerial Vehicles.”
- J. Park, D. Kim, G. C. Kim, D. Oh, and H. J. Kim, “Online Distributed Trajectory Planning for Quadrotor Swarm With Feasibility Guarantee Using Linear Safe Corridor,” IEEE RA-L, vol. 7.
- C. Toumieh and A. Lambert, “Decentralized Multi-Agent Planning Using Model Predictive Control and Time-Aware Safe Corridors,” IEEE RA-L, vol. 7, no. 4, pp. 11 110–11 117, Oct. 2022.
- J. Hou, X. Zhou, Z. Gan, and F. Gao, “Enhanced Decentralized Autonomous Aerial Swarm with Group Planning.” [Online]. Available: http://arxiv.org/abs/2203.01069
- M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokffnek, “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in 2013 IROS.
- S. Baskin and G. Sukhatme, “Asynchronous Real-time Decentralized Multi-Robot Trajectory Planning,” IEEE/RSJ IROS, Oct. 2022.
- J. Gielis, A. Shankar, and A. Prorok, “A Critical Review of Communications in Multi-robot Systems,” Current Robotics Reports.
- J. Tordesillas and J. P. How, “MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves,” Computer-Aided Design. [Online]. Available: https://doi.org/10.1016/j.cad.2022.103341
- K. Kondo, J. Tordesillas, R. Figueroa, J. Rached, J. Merkel, P. C. Lusk, and J. P. How, “Robust mader: Decentralized and asynchronous multiagent trajectory planner robust to communication delay,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 1687–1693.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.