Robust MADER: Decentralized Multiagent Trajectory Planner Robust to Communication Delay in Dynamic Environments (2303.06222v6)
Abstract: Communication delays can be catastrophic for multiagent systems. However, most existing state-of-the-art multiagent trajectory planners assume perfect communication and therefore lack a strategy to rectify this issue in real-world environments. To address this challenge, we propose Robust MADER (RMADER), a decentralized, asynchronous multiagent trajectory planner robust to communication delay. RMADER ensures safety by introducing (1) a Delay Check step, (2) a two-step trajectory publication scheme, and (3) a novel trajectory-storing-and-checking approach. Our primary contributions include: proving recursive feasibility for collision-free trajectory generation in asynchronous decentralized trajectory-sharing, simulation benchmark studies, and hardware experiments with different network topologies and dynamic obstacles. We show that RMADER outperforms existing approaches by achieving a 100% success rate of collision-free trajectory generation, whereas the next best asynchronous decentralized method only achieves 83% success.
- P. Peng, W. Dong, G. Chen, and X. Zhu, “Obstacle avoidance of resilient uav swarm formation with active sensing system in the dense environment,” arXiv preprint arXiv:2202.13381, 2022.
- G. Ryou, E. Tal, and S. Karaman, “Cooperative Multi-Agent Trajectory Generation with Modular Bayesian Optimization.” Robotics: Science and Systems Foundation, Jun. 2022.
- A. P. Vinod, S. Safaoui, A. Chakrabarty, R. Quirynen, N. Yoshikawa, and S. Di Cairano, “Safe multi-agent motion planning via filtered reinforcement learning,” in 2022 ICRA, May 2022, pp. 7270–7276.
- Y. Kuwata and J. P. How, “Cooperative Distributed Robust Trajectory Optimization Using Receding Horizon MILP,” IEEE Transactions on Control Systems Technology, vol. 19, no. 2, pp. 423–431, Mar. 2011.
- R. Van Parys and G. Pipeleers, “Distributed model predictive formation control with inter-vehicle collision avoidance,” in ASCC, 2017.
- R. Firoozi, L. Ferranti, X. Zhang, S. Nejadnik, and F. Borrelli, “A distributed multi-robot coordination algorithm for navigation in tight environments,” arXiv preprint arXiv:2006.11492, 2020.
- C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation with distributed model predictive control for multi-robot motion planning,” IEEE RA-L, vol. 5, no. 2, pp. 604–611, 2020.
- Y. Gao, Y. Wang, X. Zhong, T. Yang, M. Wang, Z. Xu, Y. Wang, Y. Lin, C. Xu, and F. Gao, “Meeting-merging-mission: A multi-robot coordinate framework for large-scale communication-limited exploration,” in 2022 IEEE/RSJ IROS, 2022, pp. 13 700–13 707.
- B. Sabetghadam, R. Cunha, and A. Pascoal, “A distributed algorithm for real-time multi-drone collision-free trajectory replanning,” 2022.
- S. Batra, Z. Huang, A. Petrenko, T. Kumar, A. Molchanov, and G. S. Sukhatme, “Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning,” in CoRL, Jan. 2022, pp. 576–586.
- Z. Wang, C. Xu, and F. Gao, “Robust trajectory planning for spatial-temporal multi-drone coordination in large scenes,” in 2022 IROS.
- J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient Multi-Agent Trajectory Planning with Feasibility Guarantee using Relative Bernstein Polynomial,” in 2020 ICRA, 2020, pp. 434–440.
- G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, 2015.
- D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, “An Efficient Algorithm for Optimal Trajectory Generation for Heterogeneous Multi-Agent Systems in Non-Convex Environments,” IEEE RA-L, vol. 3, no. 2, pp. 1215–1222, Apr. 2018.
- J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic environments,” IEEE T-RO, 2022.
- X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments,” 2020.
- P. C. Lusk, X. Cai, S. Wadhwania, A. Paris, K. Fathian, and J. P. How, “A Distributed Pipeline for Scalable, Deconflicted Formation Flying,” IEEE RA-L, vol. 5, no. 4, pp. 5213–5220, Oct. 2020.
- L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE T-RO, 2017.
- D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi cells,” IEEE RA-L, vol. 2, no. 2, pp. 1047–1054, 2017.
- T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios,” The International Journal of Robotics Research, 2020.
- S. H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How, “Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning,” IEEE RA-L, 2020.
- Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning,” in 2017 IEEE ICRA, 2017, pp. 285–292.
- Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multi-robot operations with limited actuation: A control barrier function approach,” IEEE Control Systems Letters, 2021.
- Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via incremental sequential convex programming,” in 2015 ICRA, May 2015, pp. 5954–5961, iSSN: 1050-4729.
- S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Towards Search-based Motion Planning for Micro Aerial Vehicles.”
- J. Park, D. Kim, G. C. Kim, D. Oh, and H. J. Kim, “Online Distributed Trajectory Planning for Quadrotor Swarm With Feasibility Guarantee Using Linear Safe Corridor,” IEEE RA-L, vol. 7.
- C. Toumieh and A. Lambert, “Decentralized Multi-Agent Planning Using Model Predictive Control and Time-Aware Safe Corridors,” IEEE RA-L, vol. 7, no. 4, pp. 11 110–11 117, Oct. 2022.
- J. Hou, X. Zhou, Z. Gan, and F. Gao, “Enhanced Decentralized Autonomous Aerial Swarm with Group Planning.” [Online]. Available: http://arxiv.org/abs/2203.01069
- M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokffnek, “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in 2013 IROS.
- S. Baskin and G. Sukhatme, “Asynchronous Real-time Decentralized Multi-Robot Trajectory Planning,” IEEE/RSJ IROS, Oct. 2022.
- J. Gielis, A. Shankar, and A. Prorok, “A Critical Review of Communications in Multi-robot Systems,” Current Robotics Reports.
- J. Tordesillas and J. P. How, “MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves,” Computer-Aided Design. [Online]. Available: https://doi.org/10.1016/j.cad.2022.103341
- K. Kondo, J. Tordesillas, R. Figueroa, J. Rached, J. Merkel, P. C. Lusk, and J. P. How, “Robust mader: Decentralized and asynchronous multiagent trajectory planner robust to communication delay,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 1687–1693.