Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CHGNN: A Semi-Supervised Contrastive Hypergraph Learning Network (2303.06213v2)

Published 10 Mar 2023 in cs.LG and cs.AI

Abstract: Hypergraphs can model higher-order relationships among data objects that are found in applications such as social networks and bioinformatics. However, recent studies on hypergraph learning that extend graph convolutional networks to hypergraphs cannot learn effectively from features of unlabeled data. To such learning, we propose a contrastive hypergraph neural network, CHGNN, that exploits self-supervised contrastive learning techniques to learn from labeled and unlabeled data. First, CHGNN includes an adaptive hypergraph view generator that adopts an auto-augmentation strategy and learns a perturbed probability distribution of minimal sufficient views. Second, CHGNN encompasses an improved hypergraph encoder that considers hyperedge homogeneity to fuse information effectively. Third, CHGNN is equipped with a joint loss function that combines a similarity loss for the view generator, a node classification loss, and a hyperedge homogeneity loss to inject supervision signals. It also includes basic and cross-validation contrastive losses, associated with an enhanced contrastive loss training process. Experimental results on nine real datasets offer insight into the effectiveness of CHGNN, showing that it outperforms 13 competitors in terms of classification accuracy consistently.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube