Unifying Grokking and Double Descent (2303.06173v1)
Abstract: A principled understanding of generalization in deep learning may require unifying disparate observations under a single conceptual framework. Previous work has studied \emph{grokking}, a training dynamic in which a sustained period of near-perfect training performance and near-chance test performance is eventually followed by generalization, as well as the superficially similar \emph{double descent}. These topics have so far been studied in isolation. We hypothesize that grokking and double descent can be understood as instances of the same learning dynamics within a framework of pattern learning speeds. We propose that this framework also applies when varying model capacity instead of optimization steps, and provide the first demonstration of model-wise grokking.
- Xander Davies (10 papers)
- Lauro Langosco (5 papers)
- David Krueger (75 papers)