Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DACov: A Deeper Analysis of Data Augmentation on the Computed Tomography Segmentation Problem (2303.05912v1)

Published 10 Mar 2023 in eess.IV and cs.CV

Abstract: Due to the COVID-19 global pandemic, computer-assisted diagnoses of medical images have gained much attention, and robust methods of semantic segmentation of Computed Tomography (CT) images have become highly desirable. In this work, we present a deeper analysis of how data augmentation techniques improve segmentation performance on this problem. We evaluate 20 traditional augmentation techniques on five public datasets. Six different probabilities of applying each augmentation technique on an image were evaluated. We also assess a different training methodology where the training subsets are combined into a single larger set. All networks were evaluated through a 5-fold cross-validation strategy, resulting in over 4,600 experiments. We also propose a novel data augmentation technique based on Generative Adversarial Networks (GANs) to create new healthy and unhealthy lung CT images, evaluating four variations of our approach with the same six probabilities of the traditional methods. Our findings show that GAN-based techniques and spatial-level transformations are the most promising for improving the learning of deep models on this problem, with the StarGANv2 + F with a probability of 0.3 achieving the highest F-score value on the Ricord1a dataset in the unified training strategy. Our code is publicly available at https://github.com/VRI-UFPR/DACov2022

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.