Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adapting Contrastive Language-Image Pretrained (CLIP) Models for Out-of-Distribution Detection (2303.05828v2)

Published 10 Mar 2023 in cs.CV, cs.AI, and cs.LG

Abstract: We present a comprehensive experimental study on pretrained feature extractors for visual out-of-distribution (OOD) detection, focusing on adapting contrastive language-image pretrained (CLIP) models. Without fine-tuning on the training data, we are able to establish a positive correlation ($R2\geq0.92$) between in-distribution classification and unsupervised OOD detection for CLIP models in $4$ benchmarks. We further propose a new simple and scalable method called \textit{pseudo-label probing} (PLP) that adapts vision-LLMs for OOD detection. Given a set of label names of the training set, PLP trains a linear layer using the pseudo-labels derived from the text encoder of CLIP. To test the OOD detection robustness of pretrained models, we develop a novel feature-based adversarial OOD data manipulation approach to create adversarial samples. Intriguingly, we show that (i) PLP outperforms the previous state-of-the-art \citep{ming2022mcm} on all $5$ large-scale benchmarks based on ImageNet, specifically by an average AUROC gain of 3.4\% using the largest CLIP model (ViT-G), (ii) we show that linear probing outperforms fine-tuning by large margins for CLIP architectures (i.e. CLIP ViT-H achieves a mean gain of 7.3\% AUROC on average on all ImageNet-based benchmarks), and (iii) billion-parameter CLIP models still fail at detecting adversarially manipulated OOD images. The code and adversarially created datasets will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com