Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributionally Robust Optimization with Probabilistic Group (2303.05809v1)

Published 10 Mar 2023 in cs.LG

Abstract: Modern machine learning models may be susceptible to learning spurious correlations that hold on average but not for the atypical group of samples. To address the problem, previous approaches minimize the empirical worst-group risk. Despite the promise, they often assume that each sample belongs to one and only one group, which does not allow expressing the uncertainty in group labeling. In this paper, we propose a novel framework PG-DRO, which explores the idea of probabilistic group membership for distributionally robust optimization. Key to our framework, we consider soft group membership instead of hard group annotations. The group probabilities can be flexibly generated using either supervised learning or zero-shot approaches. Our framework accommodates samples with group membership ambiguity, offering stronger flexibility and generality than the prior art. We comprehensively evaluate PG-DRO on both image classification and natural language processing benchmarks, establishing superior performance

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube