Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models (2303.05656v3)

Published 10 Mar 2023 in cs.LG and cs.CV

Abstract: Electronic health records (EHR) contain a wealth of biomedical information, serving as valuable resources for the development of precision medicine systems. However, privacy concerns have resulted in limited access to high-quality and large-scale EHR data for researchers, impeding progress in methodological development. Recent research has delved into synthesizing realistic EHR data through generative modeling techniques, where a majority of proposed methods relied on generative adversarial networks (GAN) and their variants for EHR synthesis. Despite GAN-based methods attaining state-of-the-art performance in generating EHR data, these approaches are difficult to train and prone to mode collapse. Recently introduced in generative modeling, diffusion models have established cutting-edge performance in image generation, but their efficacy in EHR data synthesis remains largely unexplored. In this study, we investigate the potential of diffusion models for EHR data synthesis and introduce a novel method, EHRDiff. Through extensive experiments, EHRDiff establishes new state-of-the-art quality for synthetic EHR data, protecting private information in the meanwhile.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.