Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Robot Configuration Space Construction using Convolutional Encoder-Decoders (2303.05653v1)

Published 10 Mar 2023 in cs.RO and cs.CV

Abstract: Intelligent robots must be able to perform safe and efficient motion planning in their environments. Central to modern motion planning is the configuration space. Configuration spaces define the set of configurations of a robot that result in collisions with obstacles in the workspace, C-clsn, and the set of configurations that do not, C-free. Modern approaches to motion planning first compute the configuration space and then perform motion planning using the calculated configuration space. Real-time motion planning requires accurate and efficient construction of configuration spaces. We are the first to apply a convolutional encoder-decoder framework for calculating highly accurate approximations to configuration spaces. Our model achieves an average 97.5% F1-score for predicting C-free and C-clsn for 2-D robotic workspaces with a dual-arm robot. Our method limits undetected collisions to less than 2.5% on robotic workspaces that involve translation, rotation, and removal of obstacles. Our model learns highly transferable features between robotic workspaces, requiring little to no fine-tuning to adapt to new transformations of obstacles in the workspace.

Citations (2)

Summary

We haven't generated a summary for this paper yet.