Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robustly Complete Finite-State Abstractions for Control Synthesis of Stochastic Systems (2303.05566v1)

Published 8 Mar 2023 in eess.SY, cs.SY, and math.PR

Abstract: The essential step of abstraction-based control synthesis for nonlinear systems to satisfy a given specification is to obtain a finite-state abstraction of the original systems. The complexity of the abstraction is usually the dominating factor that determines the efficiency of the algorithm. For the control synthesis of discrete-time nonlinear stochastic systems modelled by nonlinear stochastic difference equations, recent literature has demonstrated the soundness of abstractions in preserving robust probabilistic satisfaction of {\omega}-regular lineartime properties. However, unnecessary transitions exist within the abstractions, which are difficult to quantify, and the completeness of abstraction-based control synthesis in the stochastic setting remains an open theoretical question. In this paper, we address this fundamental question from the topological view of metrizable space of probability measures, and propose constructive finite-state abstractions for control synthesis of probabilistic linear temporal specifications. Such abstractions are both sound and approximately complete. That is, given a concrete discrete-time stochastic system and an arbitrarily small L1-perturbation of this system, there exists a family of finite-state controlled Markov chains that both abstracts the concrete system and is abstracted by the slightly perturbed system. In other words, given an arbitrarily small prescribed precision, an abstraction always exists to decide whether a control strategy exists for the concrete system to satisfy the probabilistic specification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.