Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robustly Complete Finite-State Abstractions for Control Synthesis of Stochastic Systems (2303.05566v1)

Published 8 Mar 2023 in eess.SY, cs.SY, and math.PR

Abstract: The essential step of abstraction-based control synthesis for nonlinear systems to satisfy a given specification is to obtain a finite-state abstraction of the original systems. The complexity of the abstraction is usually the dominating factor that determines the efficiency of the algorithm. For the control synthesis of discrete-time nonlinear stochastic systems modelled by nonlinear stochastic difference equations, recent literature has demonstrated the soundness of abstractions in preserving robust probabilistic satisfaction of {\omega}-regular lineartime properties. However, unnecessary transitions exist within the abstractions, which are difficult to quantify, and the completeness of abstraction-based control synthesis in the stochastic setting remains an open theoretical question. In this paper, we address this fundamental question from the topological view of metrizable space of probability measures, and propose constructive finite-state abstractions for control synthesis of probabilistic linear temporal specifications. Such abstractions are both sound and approximately complete. That is, given a concrete discrete-time stochastic system and an arbitrarily small L1-perturbation of this system, there exists a family of finite-state controlled Markov chains that both abstracts the concrete system and is abstracted by the slightly perturbed system. In other words, given an arbitrarily small prescribed precision, an abstraction always exists to decide whether a control strategy exists for the concrete system to satisfy the probabilistic specification.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube