Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Testable Learning of Halfspaces with Adversarial Label Noise (2303.05485v1)

Published 9 Mar 2023 in cs.LG and stat.ML

Abstract: We give the first polynomial-time algorithm for the testable learning of halfspaces in the presence of adversarial label noise under the Gaussian distribution. In the recently introduced testable learning model, one is required to produce a tester-learner such that if the data passes the tester, then one can trust the output of the robust learner on the data. Our tester-learner runs in time $\poly(d/\eps)$ and outputs a halfspace with misclassification error $O(\opt)+\eps$, where $\opt$ is the 0-1 error of the best fitting halfspace. At a technical level, our algorithm employs an iterative soft localization technique enhanced with appropriate testers to ensure that the data distribution is sufficiently similar to a Gaussian.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.