Papers
Topics
Authors
Recent
2000 character limit reached

Natural Gradient Methods: Perspectives, Efficient-Scalable Approximations, and Analysis (2303.05473v1)

Published 6 Mar 2023 in cs.LG

Abstract: Natural Gradient Descent, a second-degree optimization method motivated by the information geometry, makes use of the Fisher Information Matrix instead of the Hessian which is typically used. However, in many cases, the Fisher Information Matrix is equivalent to the Generalized Gauss-Newton Method, that both approximate the Hessian. It is an appealing method to be used as an alternative to stochastic gradient descent, potentially leading to faster convergence. However, being a second-order method makes it infeasible to be used directly in problems with a huge number of parameters and data. This is evident from the community of deep learning sticking with the stochastic gradient descent method since the beginning. In this paper, we look at the different perspectives on the natural gradient method, study the current developments on its efficient-scalable empirical approximations, and finally examine their performance with extensive experiments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.