Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Gradient Methods: Perspectives, Efficient-Scalable Approximations, and Analysis (2303.05473v1)

Published 6 Mar 2023 in cs.LG

Abstract: Natural Gradient Descent, a second-degree optimization method motivated by the information geometry, makes use of the Fisher Information Matrix instead of the Hessian which is typically used. However, in many cases, the Fisher Information Matrix is equivalent to the Generalized Gauss-Newton Method, that both approximate the Hessian. It is an appealing method to be used as an alternative to stochastic gradient descent, potentially leading to faster convergence. However, being a second-order method makes it infeasible to be used directly in problems with a huge number of parameters and data. This is evident from the community of deep learning sticking with the stochastic gradient descent method since the beginning. In this paper, we look at the different perspectives on the natural gradient method, study the current developments on its efficient-scalable empirical approximations, and finally examine their performance with extensive experiments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.