Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tucker Bilinear Attention Network for Multi-scale Remote Sensing Object Detection (2303.05329v2)

Published 9 Mar 2023 in cs.CV

Abstract: Object detection on VHR remote sensing images plays a vital role in applications such as urban planning, land resource management, and rescue missions. The large-scale variation of the remote-sensing targets is one of the main challenges in VHR remote-sensing object detection. Existing methods improve the detection accuracy of high-resolution remote sensing objects by improving the structure of feature pyramids and adopting different attention modules. However, for small targets, there still be seriously missed detections due to the loss of key detail features. There is still room for improvement in the way of multiscale feature fusion and balance. To address this issue, this paper proposes two novel modules: Guided Attention and Tucker Bilinear Attention, which are applied to the stages of early fusion and late fusion respectively. The former can effectively retain clean key detail features, and the latter can better balance features through semantic-level correlation mining. Based on two modules, we build a new multi-scale remote sensing object detection framework. No bells and whistles. The proposed method largely improves the average precisions of small objects and achieves the highest mean average precisions compared with 9 state-of-the-art methods on DOTA, DIOR, and NWPU VHR-10.Code and models are available at https://github.com/Shinichict/GTNet.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.