Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can large language models build causal graphs? (2303.05279v2)

Published 7 Mar 2023 in cs.CL and cs.AI

Abstract: Building causal graphs can be a laborious process. To ensure all relevant causal pathways have been captured, researchers often have to discuss with clinicians and experts while also reviewing extensive relevant medical literature. By encoding common and medical knowledge, LLMs represent an opportunity to ease this process by automatically scoring edges (i.e., connections between two variables) in potential graphs. LLMs however have been shown to be brittle to the choice of probing words, context, and prompts that the user employs. In this work, we evaluate if LLMs can be a useful tool in complementing causal graph development.

Citations (48)

Summary

We haven't generated a summary for this paper yet.