Statistical mechanics of the maximum-average submatrix problem (2303.05237v2)
Abstract: We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.