Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reconstruction of Cardiac Cine MRI Using Motion-Guided Deformable Alignment and Multi-Resolution Fusion (2303.04968v4)

Published 9 Mar 2023 in eess.IV and cs.CV

Abstract: Cardiac cine magnetic resonance imaging (MRI) is one of the important means to assess cardiac functions and vascular abnormalities. Mitigating artifacts arising during image reconstruction and accelerating cardiac cine MRI acquisition to obtain high-quality images is important. A novel end-to-end deep learning network is developed to improve cardiac cine MRI reconstruction. First, a U-Net is adopted to obtain the initial reconstructed images in k-space. Further to remove the motion artifacts, the motion-guided deformable alignment (MGDA) module with second-order bidirectional propagation is introduced to align the adjacent cine MRI frames by maximizing spatial-temporal information to alleviate motion artifacts. Finally, the multi-resolution fusion (MRF) module is designed to correct the blur and artifacts generated from alignment operation and obtain the last high-quality reconstructed cardiac images. At an 8$\times$ acceleration rate, the numerical measurements on the ACDC dataset are structural similarity index (SSIM) of 78.40%$\pm$.57%, peak signal-to-noise ratio (PSNR) of 30.46$\pm$1.22dB, and normalized mean squared error (NMSE) of 0.0468$\pm$0.0075. On the ACMRI dataset, the results are SSIM of 87.65%$\pm$4.20%, PSNR of 30.04$\pm$1.18dB, and NMSE of 0.0473$\pm$0.0072. The proposed method exhibits high-quality results with richer details and fewer artifacts for cardiac cine MRI reconstruction on different accelerations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube