Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Dextrous Tactile In-Hand Manipulation Using a Modular Reinforcement Learning Architecture (2303.04705v1)

Published 8 Mar 2023 in cs.RO

Abstract: Dextrous in-hand manipulation with a multi-fingered robotic hand is a challenging task, esp. when performed with the hand oriented upside down, demanding permanent force-closure, and when no external sensors are used. For the task of reorienting an object to a given goal orientation (vs. infinitely spinning it around an axis), the lack of external sensors is an additional fundamental challenge as the state of the object has to be estimated all the time, e.g., to detect when the goal is reached. In this paper, we show that the task of reorienting a cube to any of the 24 possible goal orientations in a ${\pi}$/2-raster using the torque-controlled DLR-Hand II is possible. The task is learned in simulation using a modular deep reinforcement learning architecture: the actual policy has only a small observation time window of 0.5s but gets the cube state as an explicit input which is estimated via a deep differentiable particle filter trained on data generated by running the policy. In simulation, we reach a success rate of 92% while applying significant domain randomization. Via zero-shot Sim2Real-transfer on the real robotic system, all 24 goal orientations can be reached with a high success rate.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com