Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HyT-NAS: Hybrid Transformers Neural Architecture Search for Edge Devices (2303.04440v2)

Published 8 Mar 2023 in cs.CV and cs.LG

Abstract: Vision Transformers have enabled recent attention-based Deep Learning (DL) architectures to achieve remarkable results in Computer Vision (CV) tasks. However, due to the extensive computational resources required, these architectures are rarely implemented on resource-constrained platforms. Current research investigates hybrid handcrafted convolution-based and attention-based models for CV tasks such as image classification and object detection. In this paper, we propose HyT-NAS, an efficient Hardware-aware Neural Architecture Search (HW-NAS) including hybrid architectures targeting vision tasks on tiny devices. HyT-NAS improves state-of-the-art HW-NAS by enriching the search space and enhancing the search strategy as well as the performance predictors. Our experiments show that HyT-NAS achieves a similar hypervolume with less than ~5x training evaluations. Our resulting architecture outperforms MLPerf MobileNetV1 by 6.3% accuracy improvement with 3.5x less number of parameters on Visual Wake Words.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.