Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

M-EBM: Towards Understanding the Manifolds of Energy-Based Models (2303.04343v1)

Published 8 Mar 2023 in cs.CV

Abstract: Energy-based models (EBMs) exhibit a variety of desirable properties in predictive tasks, such as generality, simplicity and compositionality. However, training EBMs on high-dimensional datasets remains unstable and expensive. In this paper, we present a Manifold EBM (M-EBM) to boost the overall performance of unconditional EBM and Joint Energy-based Model (JEM). Despite its simplicity, M-EBM significantly improves unconditional EBMs in training stability and speed on a host of benchmark datasets, such as CIFAR10, CIFAR100, CelebA-HQ, and ImageNet 32x32. Once class labels are available, label-incorporated M-EBM (M-JEM) further surpasses M-EBM in image generation quality with an over 40% FID improvement, while enjoying improved accuracy. The code can be found at https://github.com/sndnyang/mebm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com

GitHub