Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Sparse Recovery with Decision Stumps (2303.04301v1)

Published 8 Mar 2023 in stat.ML, cs.DS, and cs.LG

Abstract: Decision trees are widely used for their low computational cost, good predictive performance, and ability to assess the importance of features. Though often used in practice for feature selection, the theoretical guarantees of these methods are not well understood. We here obtain a tight finite sample bound for the feature selection problem in linear regression using single-depth decision trees. We examine the statistical properties of these "decision stumps" for the recovery of the $s$ active features from $p$ total features, where $s \ll p$. Our analysis provides tight sample performance guarantees on high-dimensional sparse systems which align with the finite sample bound of $O(s \log p)$ as obtained by Lasso, improving upon previous bounds for both the median and optimal splitting criteria. Our results extend to the non-linear regime as well as arbitrary sub-Gaussian distributions, demonstrating that tree based methods attain strong feature selection properties under a wide variety of settings and further shedding light on the success of these methods in practice. As a byproduct of our analysis, we show that we can provably guarantee recovery even when the number of active features $s$ is unknown. We further validate our theoretical results and proof methodology using computational experiments.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.