Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gradient-Guided Knowledge Distillation for Object Detectors (2303.04240v1)

Published 7 Mar 2023 in cs.CV

Abstract: Deep learning models have demonstrated remarkable success in object detection, yet their complexity and computational intensity pose a barrier to deploying them in real-world applications (e.g., self-driving perception). Knowledge Distillation (KD) is an effective way to derive efficient models. However, only a small number of KD methods tackle object detection. Also, most of them focus on mimicking the plain features of the teacher model but rarely consider how the features contribute to the final detection. In this paper, we propose a novel approach for knowledge distillation in object detection, named Gradient-guided Knowledge Distillation (GKD). Our GKD uses gradient information to identify and assign more weights to features that significantly impact the detection loss, allowing the student to learn the most relevant features from the teacher. Furthermore, we present bounding-box-aware multi-grained feature imitation (BMFI) to further improve the KD performance. Experiments on the KITTI and COCO-Traffic datasets demonstrate our method's efficacy in knowledge distillation for object detection. On one-stage and two-stage detectors, our GKD-BMFI leads to an average of 5.1% and 3.8% mAP improvement, respectively, beating various state-of-the-art KD methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)