Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Flow-Based Integrated Assignment and Path-Finding for Mobile Robot Sorting Systems (2303.04070v1)

Published 7 Mar 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Express companies are deploying more robotic sorting systems, where mobile robots are used to sort incoming parcels by destination. In this study, we propose an integrated assignment and path-finding method for robots in such sorting systems. The method has two parts: offline and online. In the offline part, we represent the system as a traffic flow network, develop an approximate delay function using stochastic models, and solve the min-cost network flow problem. In the online part, robots are guided through the system according to the calculated optimal flow split probability. The online calculation of the method is decentralized and has linear complexity. Our method outperforms fast multi-agent path planning algorithms like prioritized planning because such algorithms lead to stochastic user equilibrium traffic assignment. In contrast, our method gives the approximated system-optimal traffic assignment. According to our simulations, our method can achieve 10%--20% higher throughput than zoning or random assignment. We also show that our method is robust even if the initial demand estimation is inaccurate.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)