Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization (2303.03984v4)

Published 7 Mar 2023 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: Minimax optimization recently is widely applied in many machine learning tasks such as generative adversarial networks, robust learning and reinforcement learning. In the paper, we study a class of nonconvex-nonconcave minimax optimization with nonsmooth regularization, where the objective function is possibly nonconvex on primal variable $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition on dual variable $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any specifical types. Theoretically, we prove that our methods have the best known sample complexity of $\tilde{O}(\epsilon{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution. Some numerical experiments on PL-game and Wasserstein-GAN demonstrate the efficiency of our proposed methods.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.