Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved uniform error bounds of exponential wave integrator method for long-time dynamics of the space fractional Klein-Gordon equation with weak nonlinearity (2303.03754v1)

Published 7 Mar 2023 in math.NA and cs.NA

Abstract: An improved uniform error bound at $O\left(hm+\varepsilon2 \tau2\right)$ is established in $H{\alpha/2}$-norm for the long-time dynamics of the nonlinear space fractional Klein-Gordon equation (NSFKGE). A second-order exponential wave integrator (EWI) method is used to semi-discretize NSFKGE in time and the Fourier spectral method in space is applied to derive the full-discretization scheme. Regularity compensation oscillation (RCO) technique is employed to prove the improved uniform error bounds at $O\left(\varepsilon2 \tau2\right)$ in temporal semi-discretization and $O\left(hm+\varepsilon2 \tau2\right)$ in full-discretization up to the long-time $T_{\varepsilon}=T / \varepsilon2$ ($T>0$ fixed), respectively. Complex NSFKGE and oscillatory complex NSFKGE with nonlinear terms of general power exponents are also discussed. Finally, the correctness of the theoretical analysis and the effectiveness of the method are verified by numerical examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.