Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Refined Pseudo labeling for Source-free Domain Adaptive Object Detection (2303.03728v1)

Published 7 Mar 2023 in cs.CV

Abstract: Domain adaptive object detection (DAOD) assumes that both labeled source data and unlabeled target data are available for training, but this assumption does not always hold in real-world scenarios. Thus, source-free DAOD is proposed to adapt the source-trained detectors to target domains with only unlabeled target data. Existing source-free DAOD methods typically utilize pseudo labeling, where the performance heavily relies on the selection of confidence threshold. However, most prior works adopt a single fixed threshold for all classes to generate pseudo labels, which ignore the imbalanced class distribution, resulting in biased pseudo labels. In this work, we propose a refined pseudo labeling framework for source-free DAOD. First, to generate unbiased pseudo labels, we present a category-aware adaptive threshold estimation module, which adaptively provides the appropriate threshold for each category. Second, to alleviate incorrect box regression, a localization-aware pseudo label assignment strategy is introduced to divide labels into certain and uncertain ones and optimize them separately. Finally, extensive experiments on four adaptation tasks demonstrate the effectiveness of our method.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.