Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FIT: Frequency-based Image Translation for Domain Adaptive Object Detection (2303.03698v1)

Published 7 Mar 2023 in cs.CV

Abstract: Domain adaptive object detection (DAOD) aims to adapt the detector from a labelled source domain to an unlabelled target domain. In recent years, DAOD has attracted massive attention since it can alleviate performance degradation due to the large shift of data distributions in the wild. To align distributions between domains, adversarial learning is widely used in existing DAOD methods. However, the decision boundary for the adversarial domain discriminator may be inaccurate, causing the model biased towards the source domain. To alleviate this bias, we propose a novel Frequency-based Image Translation (FIT) framework for DAOD. First, by keeping domain-invariant frequency components and swapping domain-specific ones, we conduct image translation to reduce domain shift at the input level. Second, hierarchical adversarial feature learning is utilized to further mitigate the domain gap at the feature level. Finally, we design a joint loss to train the entire network in an end-to-end manner without extra training to obtain translated images. Extensive experiments on three challenging DAOD benchmarks demonstrate the effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.