Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MPool: Motif-Based Graph Pooling (2303.03654v1)

Published 7 Mar 2023 in cs.LG and cs.SI

Abstract: Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification. Current GNN models apply different graph pooling methods that reduce the number of nodes and edges to learn the higher-order structure of the graph in a hierarchical way. All these methods primarily rely on the one-hop neighborhood. However, they do not consider the higher- order structure of the graph. In this work, we propose a multi-channel Motif-based Graph Pooling method named (MPool) captures the higher-order graph structure with motif and local and global graph structure with a combination of selection and clustering-based pooling operations. As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes. As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency. As the final layer, the result of each channel is aggregated into the final graph representation. We perform extensive experiments on eight benchmark datasets and show that our proposed method shows better accuracy than the baseline methods for graph classification tasks.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.