Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Filter Pruning based on Information Capacity and Independence (2303.03645v2)

Published 7 Mar 2023 in cs.CV and cs.CC

Abstract: Filter pruning has gained widespread adoption for the purpose of compressing and speeding up convolutional neural networks (CNNs). However, existing approaches are still far from practical applications due to biased filter selection and heavy computation cost. This paper introduces a new filter pruning method that selects filters in an interpretable, multi-perspective, and lightweight manner. Specifically, we evaluate the contributions of filters from both individual and overall perspectives. For the amount of information contained in each filter, a new metric called information capacity is proposed. Inspired by the information theory, we utilize the interpretable entropy to measure the information capacity, and develop a feature-guided approximation process. For correlations among filters, another metric called information independence is designed. Since the aforementioned metrics are evaluated in a simple but effective way, we can identify and prune the least important filters with less computation cost. We conduct comprehensive experiments on benchmark datasets employing various widely-used CNN architectures to evaluate the performance of our method. For instance, on ILSVRC-2012, our method outperforms state-of-the-art methods by reducing FLOPs by 77.4% and parameters by 69.3% for ResNet-50 with only a minor decrease in accuracy of 2.64%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.