Papers
Topics
Authors
Recent
2000 character limit reached

Expressivity of Shallow and Deep Neural Networks for Polynomial Approximation (2303.03544v2)

Published 6 Mar 2023 in cs.LG and stat.ML

Abstract: This study explores the number of neurons required for a Rectified Linear Unit (ReLU) neural network to approximate multivariate monomials. We establish an exponential lower bound on the complexity of any shallow network approximating the product function over a general compact domain. We also demonstrate this lower bound doesn't apply to normalized Lipschitz monomials over the unit cube. These findings suggest that shallow ReLU networks experience the curse of dimensionality when expressing functions with a Lipschitz parameter scaling with the dimension of the input, and that the expressive power of neural networks is more dependent on their depth rather than overall complexity.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.