Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph Neural Networks (2303.03496v1)

Published 6 Mar 2023 in cs.LG, cs.SY, and eess.SY

Abstract: The wind energy industry has been experiencing tremendous growth and confronting the failures of wind turbine components. Wind turbine gearbox malfunctions are particularly prevalent and lead to the most prolonged downtime and highest cost. This paper presents a data-driven gearbox fault detection algorithm base on high frequency vibration data using graph neural network (GNN) models and sparse filtering (SF). The approach can take advantage of the comprehensive data sources and the complicated sensing networks. The GNN models, including basic graph neural networks, gated graph neural networks, and gated graph sequential neural networks, are used to detect gearbox condition from knowledge-based graphs formed using wind turbine information. Sparse filtering is used as an unsupervised feature learning method to accelerate the training of the GNN models. The effectiveness of the proposed method was verified on practical experimental data.

Summary

We haven't generated a summary for this paper yet.