Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Machine learning for phase ordering dynamics of charge density waves (2303.03493v1)

Published 6 Mar 2023 in cond-mat.str-el, cond-mat.stat-mech, and cs.LG

Abstract: We present a ML framework for large-scale dynamical simulations of charge density wave (CDW) states. The charge modulation in a CDW state is often accompanied by a concomitant structural distortion, and the adiabatic evolution of a CDW order is governed by the dynamics of the lattice distortion. Calculation of the electronic contribution to the driving forces, however, is computationally very expensive for large systems. Assuming the principle of locality for electron systems, a neural-network model is developed to accurately and efficiently predict local electronic forces with input from neighborhood configurations. Importantly, the ML model makes possible a linear complexity algorithm for dynamical simulations of CDWs. As a demonstration, we apply our approach to investigate the phase ordering dynamics of the Holstein model, a canonical system of CDW order. Our large-scale simulations uncover an intriguing growth of the CDW domains that deviates significantly from the expected Allen-Cahn law for phase ordering of Ising-type order parameter field. This anomalous domain-growth could be attributed to the complex structure of domain-walls in this system. Our work highlights the promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.