2000 character limit reached
Thompson Sampling for Linear Bandit Problems with Normal-Gamma Priors (2303.03348v1)
Published 6 Mar 2023 in cs.LG, cs.AI, and stat.ML
Abstract: We consider Thompson sampling for linear bandit problems with finitely many independent arms, where rewards are sampled from normal distributions that are linearly dependent on unknown parameter vectors and with unknown variance. Specifically, with a Bayesian formulation we consider multivariate normal-gamma priors to represent environment uncertainty for all involved parameters. We show that our chosen sampling prior is a conjugate prior to the reward model and derive a Bayesian regret bound for Thompson sampling under the condition that the 5/2-moment of the variance distribution exist.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.