Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Thompson Sampling for Linear Bandit Problems with Normal-Gamma Priors (2303.03348v1)

Published 6 Mar 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We consider Thompson sampling for linear bandit problems with finitely many independent arms, where rewards are sampled from normal distributions that are linearly dependent on unknown parameter vectors and with unknown variance. Specifically, with a Bayesian formulation we consider multivariate normal-gamma priors to represent environment uncertainty for all involved parameters. We show that our chosen sampling prior is a conjugate prior to the reward model and derive a Bayesian regret bound for Thompson sampling under the condition that the 5/2-moment of the variance distribution exist.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.