Papers
Topics
Authors
Recent
2000 character limit reached

Faithfulness-Aware Decoding Strategies for Abstractive Summarization (2303.03278v1)

Published 6 Mar 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Despite significant progress in understanding and improving faithfulness in abstractive summarization, the question of how decoding strategies affect faithfulness is less studied. We present a systematic study of the effect of generation techniques such as beam search and nucleus sampling on faithfulness in abstractive summarization. We find a consistent trend where beam search with large beam sizes produces the most faithful summaries while nucleus sampling generates the least faithful ones. We propose two faithfulness-aware generation methods to further improve faithfulness over current generation techniques: (1) ranking candidates generated by beam search using automatic faithfulness metrics and (2) incorporating lookahead heuristics that produce a faithfulness score on the future summary. We show that both generation methods significantly improve faithfulness across two datasets as evaluated by four automatic faithfulness metrics and human evaluation. To reduce computational cost, we demonstrate a simple distillation approach that allows the model to generate faithful summaries with just greedy decoding. Our code is publicly available at https://github.com/amazon-science/faithful-summarization-generation

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com