Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluating Parameter-Efficient Transfer Learning Approaches on SURE Benchmark for Speech Understanding (2303.03267v1)

Published 2 Mar 2023 in cs.CL, cs.SD, and eess.AS

Abstract: Fine-tuning is widely used as the default algorithm for transfer learning from pre-trained models. Parameter inefficiency can however arise when, during transfer learning, all the parameters of a large pre-trained model need to be updated for individual downstream tasks. As the number of parameters grows, fine-tuning is prone to overfitting and catastrophic forgetting. In addition, full fine-tuning can become prohibitively expensive when the model is used for many tasks. To mitigate this issue, parameter-efficient transfer learning algorithms, such as adapters and prefix tuning, have been proposed as a way to introduce a few trainable parameters that can be plugged into large pre-trained LLMs such as BERT, and HuBERT. In this paper, we introduce the Speech UndeRstanding Evaluation (SURE) benchmark for parameter-efficient learning for various speech-processing tasks. Additionally, we introduce a new adapter, ConvAdapter, based on 1D convolution. We show that ConvAdapter outperforms the standard adapters while showing comparable performance against prefix tuning and LoRA with only 0.94% of trainable parameters on some of the task in SURE. We further explore the effectiveness of parameter efficient transfer learning for speech synthesis task such as Text-to-Speech (TTS).

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube