Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Extracting Specialized Code Abilities from Large Language Models: A Feasibility Study (2303.03012v4)

Published 6 Mar 2023 in cs.SE

Abstract: Recent advances in LLMs significantly boost their usage in software engineering. However, training a well-performing LLM demands a substantial workforce for data collection and annotation. Moreover, training datasets may be proprietary or partially open, and the process often requires a costly GPU cluster. The intellectual property value of commercial LLMs makes them attractive targets for imitation attacks, but creating an imitation model with comparable parameters still incurs high costs. This motivates us to explore a practical and novel direction: slicing commercial black-box LLMs using medium-sized backbone models. In this paper, we explore the feasibility of launching imitation attacks on LLMs to extract their specialized code abilities, such as"code synthesis" and "code translation." We systematically investigate the effectiveness of launching code ability extraction attacks under different code-related tasks with multiple query schemes, including zero-shot, in-context, and Chain-of-Thought. We also design response checks to refine the outputs, leading to an effective imitation training process. Our results show promising outcomes, demonstrating that with a reasonable number of queries, attackers can train a medium-sized backbone model to replicate specialized code behaviors similar to the target LLMs. We summarize our findings and insights to help researchers better understand the threats posed by imitation attacks, including revealing a practical attack surface for generating adversarial code examples against LLMs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.